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1. Introduction

As a challenge and interesting area, brain science has attracted
many theoretic researchers as well as experimental scientists all
the time [1-5]. Many neuroscientists have tried to explore and
uncover neural mechanisms of the brain, which have a strong
potential to treat degenerative diseases and protect our brain in
future. In addition, it can provide ideas for artificial intelligence
and cognitive science. At the same time, some mathematicians
and physists also took part in this field and brought in several sig-
nificant works. As the basic unit of the human brain, brilliant neu-
rons are connected by electrical synapses and chemical synapses so
that they can complete information transmissions and cognitive
functions. In the process, they constitute a large complex dynami-
cal network, which results in abundant dynamical phenomena. At
theoretical levels, various kinds of neuron models or neural net-
work models have been proposed to simulate real neurons and
electrophysiological characteristics, such as Hodgkin-Huxley neu-
ron [1], McClloch-Pitts model [2], Hopfield neural networks [3],
BAM neural networks [4], and Cohen-Grossberg neural networks
[5]. From the viewpoint of dynamical systems, a neural network
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can be a nonlinear dynamical system which is composed of many
simple neuronal elements, its structure and connection strengths
have rather important influence on dynamical evolutions.
Because of potential applications of neural networks, dynamical
behaviors of neural networks attracted a lot of theoretical
researchers [6-11]. These earlier neural networks are generally
considered to construct a network by fixed synaptic strengths.
Hebb proposed that the strength of synapses in human brain neu-
rons is changed (Hebb’s rule) [12], which has promoted the devel-
opment of theories and applications of neural network. So,
considering dynamic synaptic weights is more plausible for infor-
mation transmissions of biological networks. Dynamic neural net-
works with feedforward and feedback connections between neural
layers have potential application in visual processing, pattern
recognition, etc. In order to reflect the competitive and cooperative
characteristic of neurons, Lemmon et al. [13] considered a class of
laterally inhibited network modified by external input. This class of
neural networks describes the dynamical behaviors of both activity
levels, the short-term memory (STM) and the long term memory
(LTM). Meyer-Base et al. [14,15] extended previous models and
proposed a class of competitive neural networks with different
time scales. Based on different time scales, the short-term memory
(STM) is faster than the long term memory (LTM) (0 < ¢ < 1). So
the short-term memory (STM) refers to the fast neural activities,
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and the long term memory (LTM) to the slow activities of unsuper-
vised synaptic modifications by input. The general neural network
equations describing the temporal evolution of the STM and LTM
states for the ith neuron of an n neurons network are as follows:

Za,]f] x;(t
S.l'( ) :Si( )+fi(xi( ))* l:1’27"'>n

Related papers on synchronization dynamics of competitive
neural networks [16-18].

As collective behaviors, consensus and synchronization are pop-
ularly in nature, society and neural networks [19-23]. Neuronal
collective activities are considered to complete certain tasks [24]
and other diversity of cognitive functions, such as pattern recogni-
tion [20]. Various studies show that brain pathologies and disor-
ders are related to synchronization behaviors of neurons [25,26].
Especially, synchronization in neuronal systems or neural net-
works are very interesting and very important [20,24-27].
Researchers found that the memristor has good memory character-
istic like brain [28]. Therefore, a lot of researchers considered the
memristor instead of artifical synapse for simulating some function
of the brain [29]. Using the advantage of a memristor, some
researchers proposed memristive neural networks and their syn-
chronized dynamical behavior was discussed [18,20-33]. Shi
et al. [18] investigated synchronization problems of memristive
neural networks with different time scales.

However, most works on synchronization of competitive neural
networks consider external input and auto-feedbck connections
[14-18], which can realize auto-associative memories. In 1988,
Kosko [4] proposed bidirectional associative memory(BAM) neural
networks which can be realize a hetero-associative memories. It
can be successfully applied to image processing, pattern recogni-
tion and compressing data and it has attracted great interest of
many researchers [4,6,11,32,33]. This is certain physiological sig-
nificance and inspiration. For an example, the visual cortex is gen-
erally considered to consist of six layers, from low-level to high-
level, each layer completes specific information processing tasks,
and finally completes the whole information transmission. This
model can be regarded as a simplified model for achieving basic
function. As far as we know, there are a few of results considering
competitive bidirectional associative memory(BAM) neural net-
works with different time scales. Based on the above discussions
and inspired by bidirectional associated neural networks [4,6]
and laterally inhibited neural networks [13-15], in this paper, we
propose a double-layer memristor-based competitive bidirectional
associative memory(BAM) neural network with different time
scales as follows:

STM : ex;(t) = —xi(t )) + Hisi(t),

LTM :

STM : &x;(t) = —xi(t +Zaﬁ xi(0)f; (1)

— layer : +Zbﬂ Xi(t f] y(t —1(t ))) + Iisi(t),
LTM : §(t) = —si(t)+g,-(xi( ), i=1,2,....n

(1a)
STM = &y;(t) = —y;(t) + > _ci (v;(t)) & (xi(t))
i=1
—1 :
aver +Zdu Yi(6)gi(xi(t = T(6)) +Jjri(e),

LTM : f(t) = —rj(t) + f;(y;(1)), j=1,2,...,m,

(1b)
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where 0 < ¢ < 1 ,n denotes the number of neurons of the X-layer,
and m denotes the number of neurons of the Y-layer.
X(t) = (X1 (t), ..., %, ()", x;(t) is the neurons’ fast neural activities of
the X-layer, y(t) = (y;(t),...,y,(t)" describes the neurons’ fast
neural activities of the Y-layer. f;(y;(t)) and g;(x;(t)) are the output
of neurons of the X-layer and the Y-layer, respectively; further-

more,  f(y()) = (FL01(6), - S Wm(0))" g(x(t) =
(& (1 (D)), ..., Zu(Xa())). si(t) and rj(t) are correspondingly the slow
activity of unsupervised synaptic efficiencies, respectively; further-
more, s(t) = (s1(t),...,5.(t))" and r(t) = (r1(t),...,rm(t)". I; is the
strength of the external stimulus for the X-layer and J; is the
strength according to the Y-layer. a;, c; represent the connection
weight between the ith neuron and the jth neuron, respectively;
b;i, dj denote the synaptic weight of the delayed feedback, describ-
ing the dynamical efficiency of the synaptic strength between the
X-layer and the Y-layer, respectively. Based on the memristor’s fea-
ture, the current-voltage relationship can be generally described as
follows:

and

@i, xi(t)| > Ti, bii, [xi(t)| > T,
a;i(xi(t)) = { bji(xi(t)) =

aji7 |Xi(t)| <Ti th |X,‘(t)| <T;

éif’ |y](t)‘ > ij dij7 ‘yj(t)‘ >Tj,
(1) = 4y (3,0) =

G, (O < T, dy, (O <Tj,

in which the switching jumps T;, T; > O,dj,»,aj,»,f)ji, Bj,-, é,-j,é,-j,&,-j,ay are
all constant numbers and t(t) corresponds to the transmission
time-varying delay.

Remark 1. In Egs. (1a) and (1b), we know 0 < & < 1,x;(t) (or y;(t))
is faster than s;(t)(or rj(t)) from this time-scale. So x;(t) (or y;(t))
refers to fast neural activities (STM) and s;(t) (or rj(t)) to slow
neural activities(LTM).

NN

Remark 2. The competitive memristive neural network model (1)
is basically a state-dependent nonlinear switching dynamical sys-
tem. It extends traditional neural network models, such as BAM
neural networks [6,11,26].

The main contributions of this paper are as follows:

(i) we extend competitive neural networks with different time
scales to bidirectional associative memory neural networks
with different time scales (hetero-associative memory neural
network) and mainly proposed a double-layer memristor-
based competitive bidirectional associative memory (BAM)
neural network with different time scales.

(ii) we give two kinds of control design to realize synchroniza-
tion of competitive memristive BAM neural networks with dif-
ferent scales. Based on the analysis of our results, it is
theoretically easier to satisfy synchronization for a controller
with delay-independence and it can be easily applied in
practice.

The rest of this paper is organized as follows. In Section 2,
we introduce some notations, definitions and some preliminary
results. In Section 3, we present sufficient conditions for syn-
chronizaiton of system (1) under two kinds of controller.
Finally, in Section 4, an example illustrates the feasibility of
our results.
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2. Preliminaries

In the following, we give the notations used in this paper. The
solutions of all systems are considered in Filippov's sense [34]. R
and R”" denote the n-dimensional Euclidean space and the set
of all n x n real matrices, respectively. P > 0 means a real positive
definite matrix. In the Banach space of all continuous functions
C([-7,0,R") equipped with the norm defined by |¢| =

n 21172
SUP_ccrco [ X194 (0]
cola,a] denotes the convex hull. For the vector x(t) =
L x.(0))T € R, ||x|| denotes the Euclidean vector norm,

1/2
[srmor]”
To obtain solutions of system (1), we furthermore assume
that.(H1) There exists a diagonal matrix L=diag(ly,...,l,),n=
diag(n,,...,n,) satisfying

0 < 18X &)
x=y]

If;(x) = f;(¥)l
[x—y|
for any x(t),y(t) R, i=1,...,n; j=1,...,m.(H2) There exist posi-

tive constants 7,y such that 0 < 7(t) < 7,7(t) <y < 1.
In what follows, we introduce lemma and some definitions
below [18,34]:

(Xl (f)

[IX[| =

< i,

Lemma 1. For any vector x, y € R" and a positive constant a, the
following matrix inequality holds:

2Ty < ax"x +alyTy
Definition 1. E C R", x— F(x) is called a set-valued map from

E—R", if for all x € E, there is a corresponding nonempty set
F(x) CcR".

Definition 2. For the system % = g(x),x € R", with discontinous
right-hand sides, a set-valued map ¢(x) is defined as

¢(x)=( [ c0lg(B(x.9)) \N]

0>0u(N)=0

where Cco[E] is the closure of the convex hull of the set
E,B(x,8) = {y: |y — x|| < J} and u(N) is a Lebesgue measure of the
set N. A solution in Filippov’s sense of the Cauchy problem for this
system with the initial condition x(0) = X, is an absolutely continu-
ous function x(t),t € [0, T}, which satisfies x(0) = xo and the differ-
ential inclusion [35]:
% € ¢(x) for ae. te][0,T].

Based on the theories of set-valued maps and differential inclu-
sions above, the memristor-based neural network (1) can be
rewritten as the following differential inclusion:

m

STM : ex;(t) € —xi(t) + Y_co[a;, Gi]f; (v;(1))

j=1
Pt
= —51(

— layer :

Byl (v (¢

) +&i(xi(t)), 1

= 7(1)) +Iisi(0),

LTM : 1,2,...

$i(t) M,

(24)
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STM : &y;(t) € —y;(t +ZCO Cij, Cjj g,(x,( )
i=1
— layer : & ~
+3 co[dy, dy g (xi(t — T(6)) + 5 (0),
i=1
LTM : () = —15(6) + £, (,(0)), j = 1,2,....m,

(2B)
where @; = max{a, @}, a; = min{a, a;}, b = max{B b; } b =
mm{bj,-,bﬁ},c,»j:max{cij,c,-j},g,»j:mzn{cij,cij},dv:max{ i, d } dij=
mln{ay.au}

From [9-11,34-36], there exist @; € co[dy, a;], bﬂ eco[fJ 5],
&j € co[éy, &), and dj € co [&g,aﬁ] such that
m ~
STM = exi(t) = —xi(t) + Zaﬁ,» ()
— layer :
+Zbﬁfj yi(t— (1) +Iisi(0),
LTM : sl(t) =- i( )+gi(xi( ))7 i= 172,...711,
(3a)
STM : &y;(t) = —y;(t) + Zcug, xi(t
— layer :
+Zdug1 Xl )) +.]]rj( )
(3b)

This paper considers system (2) or (3) as the drive system and
the corresponding response system is as follows:

STM : &Xi(t) € —Xi(t) + g“’ [aii, @i ]f; (7;(8))
~ layer: +3 o[l By 55¢ - () + 15(0) + @),
=
LTM : §i(t) = —5i(t) + g (&:(t), i=1,2,....n,
(4)
STM : &jj(t) € —;(t +121:C0 Cij, G| & (Ri(t))
~ layer: 3 eold 8 5t = (0) <170+ 0,
LTM : 15(t) = =75(6) + f;(5i(8), j = 1.2,....m

(4b)
There equivalently exist @; e colay,d;], by € co [5 b; } Gj €

co[éy, &), and dj € co [d,-j,d,j] such that[35,36],

STM : exi(t) = —Xi(0) + > _af; (i(1))
=1
— layer : +2’":[,ij], F(t = T(0))) + ISi(t) + (1),
=1
LTM : §i(t) = —§i(t) + &(Xi(t), i=1,2,....n,

(5a)
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STM : &y;(t) = —y;(t +Zc,,g, xi(t
- layer: S g e — T(0) + IO + vi0),
i=1
LTM : Ti(t) = —F;(0) + f;(7;(t)), j=1,2,....m

(5b)
where y(t) € R" is the state vector of the response system,
u;(t), v;(t) is the controller to be designed for synchronization. Let
the error e}(t) = %(t) — xi(t). e/ (t) = F;(t) — y;(£), hi() = Si(t) — si(t)
and h;(t) =Tj(t) — rj(t). Then the error system is given as follows:
t)+ Y _co[a;, Glf; (ejy(t))

j=1

STM : eél(t) € —

- layer: e [, B £ (€ = w(6))) + 3 0) + ),
j=1
LTM = hi(t) = —hj(t) + g;(e}(1)). i=1,2,....n,
(6a)
STM : &€} (t) € —€] (1) + Xn:co[g,-jf,-j]gi()?,-(t))
i=1
— layer :

+Zco[ is ,j]
I (6) + ;e

H(t—1(0))) + i (0) + (D),
LTM : i(t) = ) ji=1,2,....m,

(6b)
Similarly, there equivalently exist a; € co[j, @], bji € co [f)ﬁ, Bji],

& € co[éy, €], and dj € co [&,-j,fi,j] such that

STM : &é¥(t) = —eX(t +Z%( 0)
— layer : +be;( ))+1,h<)+uf(t)7 (60
LTM : h?(t>=—h?< 0+g (D) i=1.2....n
STM : &@!(t) = —€/(t) + ifugi(ef(t))
_ layer +Zdl]g, (t— () + 0 + o). (6D
LTM: B (0) = ~h(0) +£,(/(0), j=1.2.....m,
where  f;(€/(0)) = £;7,(t) —f;05(0).f; (€ (¢ = (1)) = 7t~

(1)) — £t = T(D)),
gi(ef(t— (1)) = &(Xi(t — 7(1)))

similarly,  g;(ef(t)) = g;(%i(t))
— &ixi(t — (1))

- &x(t),

Definition 3. Synchronization of system (1) and (2), that is to say,
the trivial solution of system (6) or (7) is said to be globally
asymptotically stable if for any given initial conditions they satisfy:

Jim Jle(H)]* =0, Jim [|A(t) O =

(e (0)\(ey () =
T
e y(O) h(0) = ((hs(©), (he(0)")

()

where e(t) = (ex(t), ex(t),

(e5(t).e5(0), ...

= sen (), (D),
In our paper, let U(t) and V(t) be designed as follows:
Delay — dependent controller :

wry

= Kye(t) + Kae(t — (1)), (6e)
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Delay — independent controller : <UT, VT>T = Kqe(t), (6f)

where K; are the controller gains, K; = G)(f %)J(" = cliag(k’i‘],
Iy, ..., Ky, K =diag(kl, k. ..., ki), i=1, 2,e(t —t(t)) = ((ex(t—
©0), (ey(t— (1)) = (€f(t — (1)), &(t—1(D)),.... €t — (1)),
ef(t—1(t)),....eh(t— ().

3. Main results

Theorem 1. Assume that (H1) and (H2) hold. Then two coupled
delayed neural networks (2) and (4) or (3) and (5) can be synchro-
nized with control input (8a), if there exist constants
r,12,73,74 > 0, (n+ m)-order positive definite diagonal matrix
Q > 0 and K4, K, such that T > 0, where

> T

(6 6)G )G )G 5
(€ 9)6 1)+ )06 D)
(o 36 ) e

Proof 1. For system (7), let the following Lyapunov-Krasovskii
function V(t,e(t)) be

Vite(t) =1 (e"(Oe(t) + h (O(D)) + [} €'(5)Qe(s)ds.  (6g)

In terms of assumption (H2), from (6) to (7), we have

V(t,e(t) <ek(t)L [—ex(o +AF(ey(t) + Bf (ey(t — (1)) + Ihy(t)
+Kiex(t) + (O[=hs(t) + g(ex(t))]
+E§(t>%{ ) (6) + Calex(t)) + Dgles(t — (1) +Jh, (t)

-+ ey () + Kbey (£ — T(t))] + hy (1) )[=he(t) + £ (ey(£))]
‘H?T(f)Qe( )= (1=7)e’ (¢ —t(t)Qe(t — (1))

( <e1( ;4

(e§<r B (ey(t —7(t))) + €] (1) De(es(t - ())

(elO1hs(e) + €] (e (t))-h(ef( Kiex(t) + el (0K ey (1))

(el OKeult = T(0) + €] (K, (t ~ (1))

(6) + h (Oh () + hi (Dg(ex(t) + B (Of (e,(1)

e(t) - (1 v)e’(r—u ))Qe(t - 7(1)

(el®ex(t) + €l (e, (1)) <eXT(t Fley(t) +el(t )Cg(e,t(t))>

(e1<r>Bf &(t —7(t))) + €} (1) Dglex(t - (1))

(elOths(6) + e}t Jh() 1 (el (DK ex(t) + €] (0K e (1))

(el (OKSex(t — (1)) + el (e, (¢ — T(0)

= (R ©hs(0) + B (O he(6)) + L ()8 (ex(0)) + B (O (e, 1))

el (0)Qe(t) ~ (1 v>eT<r T(0)Qe(t -

—%eT(t)e(t)Jr%eT(t)(? A)
C

Key(t —T(t)] + hl(t)

0+ E0e0) T(6)Calen(t >>)

+1
+1
+1

(i
+e'(t)Qe -
)A

1
,;e

+1
+1(ef(t
+1

+1eT(DKze(t — T(t)) +h' (h(E) (10
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From Assumption (H1) and Lemma 1, there exist positive fac-
tors ry,12,13,74 >0 and n-order and m-order diagonal matrixs
Ln«n and #,,,,, respectively, satisfying

Jett

o0 A\(ge®) . (o A\/L O
””(a o><f<ey<r>>><””<5 0>(0 "

rn [0 BY[glxlt—TO) _ | ;. B
e(t)<l~) 0) (f(ey(t_l-(t)))><2f]e(t T(t))e(t ‘C(t))
nore (0 BY(L 0\\(0 B\/L 0\
wen((3 o) )(5 o)(e )
(12)
I 0\ /h(t)\ I 0\/I 0\
0o ; )(n0) <20 ;) (o ;) (13)
e(t) + 5= h' (0)h(t)
o (8ExO)) _ o norm (L O\ /L 0
hm(f(ey(t)))<2“h(t)h(t)“e“)<0 2) (o )0
(14)

el (OKxe(t — T(t) < FeT (KK e(t) + 5 e (t — T(t))e(t — T(t)).
(15)
Substituting (11)-(15) into (10) we have

. KX 0 . 0 B L 0
v<t,e<r>><eT<f>{il<ol @%((5 o)(o n>>
(5 ) 2)) (2 0)G )

b 0)\0 7 "\C 0J\0 n
erOIOTrgLOTLO L K,KD
ﬁ(o ])(0 J) ﬁ(O n> <0 ”)_E o

e(t) +e(t — T() [+ 7 -

o+ ks = (1= 7)Q]e(t — (1))
TR (0) [—I + ok + i] h(t),
(16)

where [ is the identity matrix of appropriate dimension. It is easy to
show that there are real numbers r, and r; such that

I
-1+ EJF " <0. (17)
Letting
(1-9)Q =gk 455 A= min{lmin(T),xmin<I—ﬁ—i)} a8)
From (16)-(18), it can be seen that
V(t,e(t)) < 4(le®) > + @) (19)

Moreover, in (19), the inequality holds if and only if
le®)||* + |[h()||* = 0, i.e.|le(t)||* = 0 and |/h(t)||* = 0. Based on the
Lyapunov stability theory, it can be concluded that

. 2 . 2
Jim Jle(t)[|” =0, lim [|h(t)[|” =0

By Definition 3, the trivial solution of system (8) or (9) is glob-
ally asymptotically stable. That is to say, the neural networks (1)

114

Neurocomputing 427 (2021) 110-117

and (2) can be synchronized with the control input (8a). The proof
is complete.

Remark 3. When the synapse strength of the external stimulus is
constant for the STM state, system (1) is a continuous heteroas-
sociative memory system [11,28,29]. Furthermore, when system
(1) does not exhibit memristive, it is reduced to a general BAM
neural network in [4,6].

Corollary 1. Assume that (H1) and (H2) hold. When t(t) =1 >0,

then two coupled delayed neural networks (2) and (4) or (3) and (5)

can be synchronized with control input (8a), if there exist constants

r,12,13,74 > 0, positive definite diagonal matrix Q > 0 and Ky, K,
L 0

sl C ) )
69400
I3

A I
0 gy 0 J
—BOKY.
0 17) e
Proof 2. We obtain Corollary 1 directly from Theorem 1 by taking
Q= I

T 2en

Lo
0 7

>T

0 B

D 0

1L
+ 2ery”

In the following, we will discuss synchronization problems of
system (2) and (4) with another controller, which is delay-
independent. Theoretically, the controller can be easily applied in
engineering, because a controller with time delays may have a
complex behaviour.

Theorem 2. Assume that (H1) and (H2) hold. Then two coupled
delayed neural networks (2) and (4) or (3) and (5) can be synchro-
nized with control input (8b), if there exist -constants
r1,12,13,74 > 0,(n+ m)-order positive definite diagonal matrix
Q > 0 and K4, K, such that T > 0, where

e (3 306 (G 26 2
12 0) (o w) 20 )G f)T

Lo
0 7

L o
0 7

(o 0)

Proof 3. Taking (1 —y)Q

).

—_1
T 2ery?

we can easily obtain above result.

Furthermore, when t(t) = 7 > 0, the controller is designed as
(8b), we can obtain the corollary below:

Corollary 2. Assume that (H1) and (H2) hold. Then t(t) =1 >0,
then two coupled delayed neural networks (2) and (4) or (3) and (5)
can be synchronized with control inputs (8b), if there exist constants
r1,T2,73,14 > 0, positive definite diagonal matrix Q > 0 and Ky, K,

(5 6)(0 v)

D 0/\0 g

) (59)-#(00)(6)

such that T>0, where T=1-1K; -1t

)(59)) —e-i(2

B

0
n(L 0\ (L 0
280;/, 01/,'



Y. Zhao, S. Ren and J. Kurths

Remark 4. Thus, our results extend known results and can be
applied to much wider situations.

4. A numerical example

In the following, we give some numerical simulations to illus-
trate the results above. Consider the following memristor-based
competitive BAM neural networks with different time scales:

STM : exi(t) = —x;(t) + Zaﬁ xi(0)f; (y;(0)
— layer : m
+Y bi(%i(6)f; (¥t = T(0))) + Isi(£),
=
LTM : $i(t) = —si(t) + g;(xi(¢)), i=1,2,
(20a)
STM : Sj/j(t) = _y] +ZCU Vi t) gi(xi(t))
i=1
— layer : n
+Y dy (5(6))gi(xi(t — T(8))) + 50,
i=1
LTM : 1i(t) = —15(t) + f;(y;(1)), =1,

(20b)
where £=0.8,7(t) =0.5|sint|,f(x(t)) =tanh(x(t)),g(y(t)) = tanh(y(t)),
I, =0.1,I, =0.3,J;, = 0.3, with initial values x;(0) = —0.4, x,(0) =
0.5,51(0) = 0.5,5,(0) = 0.5, y;(0) = 0.5,r1(0) = 0.5,V0 € [-0.5,0].

25, |x|>1, -2.0, [x1] > 1,
a1 (x:(t) = { bi1(x:(t)) = {
-1.0, [x[<T, -1.0, [x[<1,
—0.15, x| > 1, —03, |x|>1,
a2 (X2 (t { bia(x2(t)) = {
01, x| < =02, |xl<1,
25, |yl >1, 015, Jy,|>1,
cu(yq(t { C1(y1(t)) = {
-0.1, || < =01, fyl<1
03, »l>1, -2.0, yil>1,
dir (y1(t) dn(y4 () =
02, |y] < =15, |yl <1

L L L L 1 L L L L I
920
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The corresponding response system is as follows:

STM : &x;(t) = —X;(t Zaﬂfj i(t
— layer : o N
e 3 Bafy 55 (€ - T(0) + 1&(0) + (o).
=
LTM : §i(t) = —5i(t) + g(xi(t)), i=1,2,
(21a)
STM : &y;(t) = —(t +Zc,,g, Xi(t
~ layer £yl — T(0)) + L) + 0(0),
i=1
LTM : 15(t) = =F;(6) + f;(75(8)), j = 1,

(21b)
with the initial values Xx;(0) =0.3, X,(0)=-0.5, 5;(0) =0.5,
5(0) =05, §1(0) =05, 71(0) =0.5. V0 €[-0.5,0], (UT, VT>T =
(gl 2{>e(t)+<§2 ?q)e(t—‘r(t)),

10

0 1), K =-4, K;=1.

4 0
Ki= (o Za) = (
0 A

Applying controller (8a), we can compute <Z’ O) =

0 -1 -01 1.28125 1.25 0.125
-1 0 0 , T=1{125 1.85625 —0.1875 | > 0;
-01 0 O 0.125 —-0.1875 0.48

furthermore, 4, , 3(T) = 0.1471, 0.617, 2.8534, respectively. Set
rn=1rn=1rn= %,r4 =2,7= % according to Theorem 1, the
response system (20) and the drive system (21) with the controllers
u(t) and v(t) can be globally asymptotically synchronized. At the
same time, Fig. 1(A), Fig. 2(A), and Fig. 3A) show time evolutions
of synchronization errors of fast neural state variables between
drive systems (20) and response systems (21), respectively;
Fig. 1B), Fig. 2B), and Fig. 3B) described synchronization errors of
the slow activity of unsupervised synaptic modifications by input,
respectively. When controller (8b) is applied in the response system
(20) and the drive system (21), similar numerical results show the
feasibility of our theoretical results.

s
h1

100

Fig. 1. Time evolutions of synchronization errors € (t), hj (t) for system (20) and (21).
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Fig. 3. Time evolutions of synchronization error &) (), h} (t) for system (20) and (21).

5. Conclusions

In this paper, we propose a double-layer memristor-based com-
petitive BAM neural network with different time scales. Based on
differential inclusions and Lyapunov functional, we explore the
synchronization problem of this kind of neural network. Firstly, a
controller with time delays is designed to achieve the synchroniza-
tion of memristor-based competitive BAM neural networks and
novel conditions to ensure synchronization of the drive system
and the corresponding response system are given. Secondly, a sim-
pler and easier applicable controller without time delay is dis-
cussed to reach synchronization, which is delay-independent.
This controller can be easily applied in engineering, because a con-
troller with time delays have a more complex behaviour. Finally, a
numerical example demonstrates the effectiveness and feasibility
of our results. When the synapse strength of the external stimulus
is constant, system (1) is a continuous hetero-associative memory
system [11,32,33]. Furthermore, when the synapse strength of sys-
tem (1) is fixed, it is reduced to a classic BAM neural network, such
as [4,6]. Uncertanity and random noise exist widely in nature, in
social systems and in biological systems. In future, we will further-
more discuss memristor-based competitive BAM neural networks
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with different time scales under impulsice effects or stochastic
disturbances.
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