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Abstract The blood-brain barrier plays a decisive role in protecting the brain from toxins
and pathogens. The ability to analyze the BBB opening (OBBB) is crucial for the treatment of
many brain diseases, but it is very difficult to noninvasively monitor OBBB. In this paper we
analyze the EEG series of healthy rats in free behaviour and after music-induced OBBB. The
research is performed using two completely different methods based on wavelet analysis and
machine learning approach. The wavelet-approach demonstrates quantitative changes in the
oscillatory structure in EEG signals after music listening, namely, a decrease in the number
of patterns to the frequency band Δ f [1; 2.5] Hz. Using methods of machine learning we
analyze the number of fragments of EEG realizations recognized as OBBB. After the music
impact the number of recognized OBBB is increased in about 50%. Both methods enable us
to recognize OBBB and are in a good agreement with each other. The comparative analysis
was carried out using F-measures and ROC-curves.

1 Introduction

The blood-brain barrier (BBB) is a highly selective barrier, which is formed by microvascular
endothelial cells surrounded by pericytes and perivascular astroglia. It controls the penetra-
tion of blood-borne agents into the brain or the release of metabolites and ions from the brain
tissue to blood [1–3]. Therefore, the BBB plays a vital role in protecting the brain against
pathogens and toxins. The BBB disruption is associated with aging, dementia, multiple scle-
rosis, Alzheimer’s disease, stroke, brain trauma, infection and tumors [45]. The permeability
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of BBB can be varied by neuroendocrine regulation and may play a protective role in injury
and stroke [36–39].

The ability to analyze the BBB opening (OBBB) is crucial for the treatment of brain
diseases, and it is very difficult to noninvasively monitor OBBB [9,23]. Therefore, there is
a strong need to create many safe methods of the assessment of the BBB permeability in
clinical practice. There has been substantial progress over the past few years [9,23]. Magnetic
resonance tomography (MRI) is an often used technique for the monitoring of OBBB [23].
However, MRI is bulky and cannot be used bedside. The MRI requests the use of contrast
agents, which can be even toxic [27,43]. The latter limits its continuous application and usage,
especially in the case of children and patients with kidney pathology [13,41]. Therefore, the
development of novel promising real-time, bedside, non-invasive, label-free, economically
beneficial and readily applicable methods is of highest actual importance, and solving this
problem would open a novel era in effective diagnosis and therapy of brain diseases that
cause acute and chronical OBBB.

In this paper we consider two different approaches for analysing the OBBB by using
electroencephalogram (EEG) time series of healthy rats. The first method is based on the
wavelet analysis of EEG signals. This approach is widely used in many biomedical papers
[50,54], partially in epilepsy research [4,53], and sleep staging [7,52], which confirms its
applicability in these tasks. Nowadays, the wavelet analysis is one of the main tools for
processing data in real time and creating brain-computer interface (BCI) devices [12,22,33].

The second method uses a machine learning approach to analyze such EEG signals.
Recently, machine learning has been increasingly used in brain activity analysis [11,35,51,
56]. The application of machine learning to recognize features of brain activity leads to the
use of artificial neural networks (ANNs) of different types and topologies. Basically, ANNs
do not analyze the EEG signal in its pure form, but use some characteristics based on the
EEGs. For example, power spectral density [44], statistical features [20], wavelet transform
[21], combinations of energies of different frequency bands [26] etc. Typically, deep neural
networks are used for classification and recognition tasks. As one of examples, the automatic
scoring of sleeping stage was recently provided by applying a convolutional neural network
[17]. In this work we use deep network with feedforward coupling.

Despite the fact that both methods are based on completely different types of analysis, they
show a good ability in recognizing the OBBB. BBB permeability can be evaluated in real
time, searching for the EEG signal features, which can be found out by using both wavelet
analysis and machine learning approaches.

2 Experiment design and data recording

The experiments were conducted on the same five adult male Wistar-Kyoto rats (250-280 g).
All procedures and experiments were done in accordance with the “Guide for the Care and
Use of Laboratory Animals” [5]. The experimental protocols were approved by the Local
Bioethics Commission of the Humboldt University and the Saratov State University. The
animals were kept in a light/dark environment with the lights on from 8:00 to 20:00 and fed
ad libitum with standard rodent food and water. The ambient temperature and humidity were
maintained at 24.5±0.5 ◦C and 40–60%, respectively. The general scheme of the experiment
is given in Fig. 1.

We use the standard method of electrocorticography (ECoG) in rats during the chronic
experiment. At the preliminary stage, we prepared connectors for implantation of epidu-
ral ECoG electrodes, combining 2 active electrodes, 1 reference electrode, as well as one
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Fig. 1 Key points of the ECoG: study of OBBB induced by the loud music

channel electromyogram (EMG) (Pinnacle Technology, Taiwan) were recorded as follows.
The rats were implanted two silver electrodes (tip diameter 2–3 μm) located at a depth of
150 μm in coordinates (L: 2.5 mm and D: 2 mm) from Bregma on either side of the mid-
line under inhalation anesthesia with 2% isoflurane at 1L/min N2O/O2 – 70:30. The head
plate was mounted and small burr holes were drilled. Afterward, ECoG wire leads were
then inserted into the burr holes on one side of the midline between the skull and under-
lying dura. ECoG leads were secured with dental acrylic. An EMG lead was inserted in
the neck muscle. Ibuprofen (15 mg/kg) for the relief of postoperative pain was provided
in their water supply for two to three days prior to surgery and for three or more days
post-surgery. The rats were allowed 10 days to recover from surgery prior to beginning the
experiment.

Ten days after surgery, animals were housed individually. The first EEG1-registration was
recorded over an hour from 1 to 2 p.m. in free rat behavior. The animal was kept in a tall
plexiglass cage (80 × 40 cm) with an access to water and regular food. The cage is located
in a shielded chamber, isolated from an external electromagnetic field.

The day after the baseline EEG1-recording, the rats were underwent to the intermittent
music. The detailed description of protocol of music-induced OBBB is described in our
early work [48]. To produce the music (70-90-100 dB and 11–10,000 Hz, Scorpions “Still
loving you”) we used loudspeaker (ranging of sound intensity 0–130 dB, frequencies 63–
15,000 Hz; 100 V, Yerasov Music Corporation, Saint Petersburg, Russia). The repetitive
music exposure was performed using the sequence of: 60 s—music on and then 60 s—
music off during 2h. The sound level was measured directly in a cage of animals using the
sound level meter (Megeon 92130, Russia). Previously, our research group [47,48] have
introduced an analysis of the BBB permeability in rats and mice, based on different bio-
physical methods in vivo real time, including fluorescent microscopy of OBBB for Evans
Blue (EB) dye (i.v.), real-time two-photon laser scanning microscopy (2PLSM) and MRI.
I have been shown, that a discovering the window of music-induced OBBB is possible
during 30–60 min after sound exposure [47,48,59]. In this paper, we record again the cor-
tical electrical activity in rats during 60 min (EEG2) after completion of auditory expo-
sure.

Thus, for each of the animals the EEG signals were recorded before and after music-
induced OBBB—EEG1 and EEG2, respectively. According to the results of Refs. [47,48],
the realization EEG1 was considered as a baseline EEG, and EEG2 corresponded to OBBB.
Further, these data were used for the calibration of both methods based on nonlinear and
machine learning approaches.
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3 Recognition of OBBB using time-frequency analysis

Today, one of the generally accepted nonlinear methods for processing and detecting of
oscillatory activity in biomedical signals is continuous wavelet transformation (CWT) [16,
28,29]. CWT is sufficiently resistant to abrupt changes in the frequency composition of the
analyzed experimental signals, which makes it possible to adequately analyze rather short
time intervals of highly nonstationary signals. The CWT for an arbitrary real signal x(t) in
the general form is defined as follows:

W (s, t0) =
+∞∫

−∞
x(t)ψ∗

s,t0(t)dt, (1)

where ψs,t0(t) is the basic complex function, s is the time scale defining the width of the
wavelet, the symbol “*” denotes the complex conjugation. The time scales s of the CWT allow
a transition to the classical frequencies f of the Fourier spectrum. Therefore, for convenience
and simplicity of the results interpretation, we consider the results in the traditional plane
( f, t0).

The basic Morlet function ψs,t0(t) is often used to analyze the activity of the brain [6,34].
By analogy with the Fourier power spectrum F( f ) for f -frequencies we can estimate the
instantaneous frequency distribution of the CWT-energy

E( f, t0) = |W ( f, t0)|2. (2)

CWT allows to analyse an experimental EEG signal x(t) simultaneously in the frequency
and time domains. Moreover, the CWT excess property is well known, and is used to search
for the fine time-frequency structure of experimental time series, which can be only poorly
detected by conventional spectral methods [24,30–32].

In this paper, we use the CWT “skeleton” method [8,18,19,25,46] to analyze the oscil-
latory structure of the EEG. It is based on a simplification of the entire surface ( f ; t) of the
experimental signal x(t) by estimation only the main part of oscillatory activity. Skeletons
are the frequency values fmax, defined at each instant of time t0. On each coordinate pair
( fmax; t0), the two-dimensional surface CWT—energy E demonstrates an extreme value. For
each time t0, it is necessary to search for the maxima in the instantaneous CWT spectrum
E( f, t) (2):

∀ f ∈ δ fmax, E( fmax, t0) ≥ E( f, t0), (3)

where fmax = sc1 is the CWT skeleton, δ fmax is a δ - region of the fmax frequency component.
The first skeleton f1 is the global maximum in the surface E( f, t0), i. e. the value of the
frequency in the signal spectrum, which correlates with the maximum of the oscillational
energy. Next, for each moment of time, we detect a local maxima sc1 > sc2 > · · · > sc j >

· · · > scnp , where n p is the amount of skeletons.
Further, we limit the consideration of the oscillatory structure in EEG signals to the

frequency band Δ f [1; 2.5] Hz. The choice of this “slow” frequency interval is due to the
evidence in the literature on the presence of biomarkers in brain slow activity reflecting
the BBB permeability changes [40,51]. Thus, at each time moment t0 we estimate which
skeleton’s number N0 falls into a certain frequency range Δ f . And next we calculate the
average number of N (t) skeletons falling into the band Δ f over the time interval Δt = 50 sec.

In Fig. 2a the results of estimating the number of N (t) skeletons for one experimental
animal are presented. We observe that the number of patterns in the low frequency range
Δ f1 increases after a powerful auditory impact (EEG2). After evaluating the distribution of

123



Eur. Phys. J. Plus         (2021) 136:736 Page 5 of 13   736 

(a) (b)

Fig. 2 Results of evaluating the wavelet-based characteristics for animal # 3. a Time-dependence of the N
average number of CWT-skeletons in the frequency range Δ f1[1; 2.5] Hz. The red line is the calculation result
for EEG1, the green line corresponds to the characteristic for EEG2. b The probability distributions of N
skeletons. Red color shows the distribution for EEG1 (no influence on the BBB-permeability), and green—for
EEG2 (after auditory impact). The arrows indicate the mean values for each distribution

the number of patterns for records EEG1 and EEG2, their mean values differ 〈N 〉EEG1 
=
〈N 〉EEG2 (see Fig. 2b). A similar situation is observed in the slow oscillatory activity of
the EEG for all experimental animals. Next, we use the detectable value 〈N 〉EEG2 as the
threshold value that characterizes the moment of BBB permeability changes.

For each experimental animal, individual threshold values were obtained 〈N 〉EEG2 =
{0, 31863; 0, 45614; 0, 462575; 0, 485995; 0, 52011}. Thus, we estimated the EEG-
dynamics of the brain activity based on the N (t)-dynamic. Generally, the value of depen-
dence N (t) in EEG2-record exceeded the threshold 〈N 〉EEG2 throughout first third of the
recording. Next, this value N (t) irregularly reduced towards the end of the EEG2-record,
when, apparently, the influence of the sound impact was compensated by the neurophysi-
ological system, and the BBB-permeability returned to its usual value. Based on this, we
assumed that the excess of the N (t) patterns number of the 〈N 〉EEG2 threshold value corre-
lated with an increase in the BBB permeability. So, when the corresponding threshold value
N (t) ≥ 〈N 〉EEG2 is exceeded, we assumed that the permeability of the BBB was increased.

4 ANN based method

In order to estimate the permeability of the BBB, a deep neural network is used. The training
set is prepared using standard Python tools (TensorFlow, NumPy, pandas, etc.) The network
is constructed and trained using an open-source deep learning API Keras [10]. The use of
EEG signals in their pure form is a non-trivial task for the ANN, since it requires a large
number of neurons and layers. This dimension problem can be solved by specially prepared
statistical characteristics calculated from these EEGs. There is a number of papers on sleep
recognition, in which the EEG signals were not used by ANN, but their averages, variations
and deviations from the mean [20,21,26,44,58]. After comparing several commonly used
statistical characteristics, we found that the relative standard deviation is the most effective
for our problem. This characteristic can also be interpreted as a signal-to-noise ratio (SNR)
[14], and calculated as the ratio between the mean of the signal μ(·) and its standard deviation
σ(·):

SN R(x) = μ(x)

σ (x)
. (4)
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Fig. 3 Examples of EEG signals (a, c) for animal # 1 and corresponding SNR characteristics (Eq. 4) shown
in panels (b, d)

Each point of this characteristic is prepared for some averaging window. The window size is
fixed to 30 s. In order to make the SNR realization smoother, the calculations were performed
with a slowly shifting time window with a 1-s step. This leads to a new temporal determination
of SNR with a time step of 1 s, where each point corresponds to the SNR value obtained
from a thirty-second window of EEG data. Figure 3 shows the EEG of one of the animals
(panels a, c) and the calculated SNR characteristics (panels b, d).

To get the training SNR examples, we used EEG signals before (EEG1) and after (EEG2)
artificially increased permeability of the BBB [49]. During the training, the fragments of
SNR for the rat after music stimulation were marked as the expected response “1” (i.e. BBB
is open), while fragments of rats before this stimulation corresponded to the response “0”
(i.e. baseline BBB). Thus, the ANN response to an unknown signal can be interpreted as a
degree of the averaged “permeability” of BBB over the considered time period.

The input layer of our ANN consists of 90 neurons. Each time the network receives a 90-s
SNR realization as an input. A smaller number of input neurons leads to slower training and a
sharp jump into overtraining. A larger number leads to inaccuracies in the temporal marking,
since it gives the response delay of more than 1.5 min. Also a few deep ANN configurations
with constant numbers of neurons in the hidden layers 200, 500, 1000 have been considered.
A network with a variable number of neurons in hidden layers (500 × 200 × 500 × 200) has
shown the optimal results during training and testing. The network scheme and the training
process are shown in Fig. 4. Panel (b) shows the general dependency of accuracy on training
epochs for training and cross-validation data. Next, we stop the training process when the
accuracy for both sets becomes equal, or when the accuracy for cross-validation data becomes
about 70%. All the layers have the sigmoid activation function f (x) = 1/(1 + e−x ).

To process the data of each rat, the network was trained on the data of the other rats.
This method is also known as leave-one-subject-out cross validation, and is often used to
increase the number of training and testing implementations. Each EEG recording was done
using two channels. The SNR and ANN markup were prepared for both signals separately.
To increase the accuracy, the network responses for both channels were multiplied. Thus, if
the network recognises the inputs from both channels are recognized simultaneously as “1”
(BBB is open), then the final answer is “1”. If one channel leads to the answer “0” and the
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Fig. 4 Schematic diagram of considered ANN (a) and the dynamics of accuracy during training depending
on the epoch number (b)

second one leads to the answer “1”, then the final response is “0”. Since the network produces
a real number from 0 to 1, the multiplication of responses from two channels can lead to
an increase in intermediate values. To eliminate this, the threshold 0.5 has been introduced.
Since then, the answers y ≥ 0.5 are regarded as “1” (BBB is open), while responses y < 0.5
complies with “0” (baseline BBB). Figure 5 shows a temporal evolution of ANN responses
for an animal with artificially open barrier, whose signals have been shown in Fig. 3(a,b).
The gray line represents the result of multiplying the signals from both channels, and red
points represent the final answer with the threshold 0.5.

The ANN found 32% of the data similar to the open barrier for implementations after
music-induced OBBB. In the case of free behaviour, this percentage was 24%. These ratios
are averaged over all considered animals. In order to exclude the peculiarities of the training,
the networks have been trained 5 times for each animal with an accuracy of at least 96%
(approximately 250 epochs). Figure 6 shows the examples of SNR obtained using fragments
of EEG signals recognized as signals with open BBB (top panels) and baseline BBB (bottom
panels).

5 Comparison of two independent methods of data processing

Figure 5 shows the intersection of both methods from Sects. 3 and 4 by green background
color. We find that both methods are in a good agreement with each other. To test this
numerically, we calculate the so-called F-measure [55], which is often used for statistical
analysis of binary classification. It is the harmonic mean between precision and recall. The
precision is the number of correctly identified positive results divided by the number of
all positive results, including those not identified correctly, and the recall is the number of
correctly identified positive results divided by the number of all samples that should have been
identified as positive. For such an assessment, one can choose one of the methods as true, for
example, the wavelet method, and then count the number of matches of both methods for the
answer “yes” (true-positive, TP), the number of matches for the answer “no” (true-negative,
TN), as well as mismatches (false-positive, FP, and false-negative, FN). Based on this, the
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after introducing the threshold 0.5. Green areas show time intervals in which both markings coincide: (1)
based on ANN answers and (2) wavelet method from Sect. 3

0 30 60 90
0.5

1.5

2.5

SN
R

re
sp

on
ce

 "
1"

0 30 60 90
0.5

1.5

2.5

0 30 60 90
0.5

1.5

2.5

0 30 60 90
0.5

1.5

2.5

0 30 60 90
0.5

1.5

2.5

SN
R

re
sp

on
ce

 "
0"

0 30 60 90
0.5

1.5

2.5

0 30 60 90
0.5

1.5

2.5

0 30 60 90
0.5

1.5

2.5

Fig. 6 Examples of input SNR implementations on which the neural network exhibited a similarity to OBBB
(top panels) and baseline BBB (bottom panels)

F-measure is calculated as follows:

P = TP

TP + FP
, R = TP

TP + FN
, F+ = 2

PR

P + R
(5)

Thus, the F-measure F+ is an evaluation of the correctness for the answers “yes”. If we
replace all letters “P” by “N” in Eq. (5), and vice versa, then this will be an estimate of
the correctness for the answer “no”, which we denote as F−. Table 1 shows the percentage
of fragments recognized as OBBB for one animal after 5 trainings. Afterward, the general
percentage of fragments, recognized as OBBB, has been averaged over all animals and over
all five trainings. Table 1 also contains the results of calculating the F-measure for five ANN
trainings, as well as the averaged characteristics. Thus, according to the calculations of the
F-measure, we can conclude that the intersection of 35% in the answers that the barrier is
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Table 1 Percentage of fragments recognized as OBBB and not, and F-measures of animal # 1 for five ANN
trainings on fragments of the other animals

Training: Tr.1 Tr.2 Tr.3 Tr.4 Tr.5 Averaged

% of open barrier in realization with an open barrier 35 22 21 38 27 28.5

% of open barrier in realization with free behaviour 24 18 13 24 20 19.8

F-measure on responses “BBB is open”, F+ 0.38 0.35 0.32 0.38 0.34 0.35

F-measure on responses “BBB is closed”, F− 0.73 0.77 0.79 0.72 0.75 0.75
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Fig. 7 Statistical comparison of both methods using ROC-curve (a), and F-scores (Eq. 5) for positive (b) and
negative (c) responses

open, and 75% in the answers about the baseline barrier. These values, averaged over all
animals, are 28% and 70%.

Another measure that allows one to assess the quality of the classification is the receiver
operating characteristic (ROC-curve). The ROC curve is created by plotting the true positive
rate (TPR = TP

TP+FN ) against the false positive rate (FPR = FP
FP+TN ) at various threshold

settings [15,42]. The classifier is considered to be good if the ROC-curve is above the diagonal
(see Fig. 7). However, the degree of success of the classifier is roughly estimated by how
far this curve is above the diagonal, and, accordingly, how large is the area below it. Figure
7 shows the ROC curves for different threshold values in cases of artificially opened BBB
(orange color) and free behaviour (blue color), when the rat can either sleep or be awake. The
markings obtained by the method, described in Sect. 3, were used as a verification data. Both
curves are above the diagonal, which indicates the similarity of the methods. In addition, the
figure shows the results of calculating the F-measures for both implementations with variation
of the threshold parameter. The points corresponding to the 0.5 threshold are highlighted by
red. As follows from the graphs of F-measures, the threshold 0.5 is optimal for positive and
negative answers. An increase in the threshold leads to an increase in false positives, and a
decrease leads to a loss of sensitivity when the network says that it is the baseline BBB.
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6 Conclusions

This work is devoted to the investigation of sustained changes in brain activity after music-
induced OBBB. BBB permeability is analyzed using two different methods—wavelet esti-
mation of the oscillatory characteristics of the EEG and machine learning using SNR charac-
teristics. The wavelet analysis demonstrated an increase in the number of arising oscillations
in the low-frequency region (1–2.5 Hz), which is universal for all animals. However, the
threshold for the increase in oscillatory activity in these frequencies is highly individual for
each animal.

The second method is based on the search of special features of SNR realisation which
are common for animals with OBBB. The use of a machine learning approach allows us to
demonstrate a high level of universality of the revealed “portrait” of the electrical activity of
the brain after an artificial increase in the permeability of the BBB.

Despite the fact that both methods are based on different characteristics, they show a
good overlap both for animals with artificially open BBB and for animals in free behaviour
without any influences. Quantification of the methods agreement was based on ROC curves
and F-measures of positive and negative responses. Both methods recognized a non-zero
probability of opening the barrier for animals with normal behaviour. It is possible that this
effect is related to the constancy of brain activity patterns during the physiological state of
sleep. A number of authors have linked spontaneous changes in BBB permeability to certain
stages of sleep, promoting a repair and clearance of brain tissue [40,47,59].

Analysis of EEG activity characteristics after sound exposure, that probably are the mark-
ers of increased BBB permeability, demonstrates the presence of a pronounced window of
15–20 mins demonstrated by both methods. After that, the EEG characteristics return to the
level of baseline ECoG. At the same time, after 5–10 min, the EEG again demonstrates an
increase in these characteristics. This probably corresponds to the features of “soft” reversible
increase in the BBB permeability, arising as a result of music exposure. At the same time,
for example, anesthesia BBB permeability impair, apparently, has a fundamentally different
physiological mechanism of its disruption, leading to a catastrophic dysfunction [57].

In the future, we plan to increase of the experimental groups and to include instrumental
methods of optical control of the BBB permeability. The preliminary analysis of brain activity
during the sleeping state of the animals is of our interest. Probably, some sleep stages would
be accompanied with the brain activity, similar to the results of music-induced OBBB.
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