Reinventing Polysomnography in the Age of Precision Medicine

Год публикации
Lim D; Mazzotti D; Sutherland Kate; Mindel J; Kim J; Cistulli P; Magalang U; Pack A; Chazal Ph; Penzel T


For almost 50 years, sleep laboratories around the world have been collecting massive amounts of polysomnographic (PSG) physiological data to diagnose sleep disorders, the majority of which are not utilized in the clinical setting. Only a small fraction of the information available within these signals is utilized to generate indices. For example, the apnea–hypopnea index (AHI) remains the primary tool for diagnostic and therapeutic decision-making for obstructive sleep apnea (OSA) despite repeated studies showing it to be inadequate in predicting clinical consequences. Today, there are many novel approaches to PSG signals, making it possible to extract more complex metrics and analyses that are potentially more clinically relevant for individual patients. However, the pathway to implement novel PSG metrics/analyses into routine clinical practice is unclear. Our goal with this review is to highlight some of the novel PSG metrics/analyses that are becoming available. We suggest that stronger academic-industry relationships would facilitate the development of state-of-the-art clinical research to establish the value of novel PSG metrics/analyses in clinical sleep medicine. Collectively, as a sleep community, it is time to reinvent how we utilize the polysomnography to move us towards Precision Sleep Medicine.

Библиографический список
  1. Zinchuk AV, Jeon S, Koo BB, Yan X, Bravata DM, Qin L, et al. Polysomnographic phenotypes and their cardiovascular implications in obstructive sleep apnoea. Thorax 2018;73:472e80.
  2. Zinchuk A, Yaggi HK. Phenotypic subtypes of OSA: a challenge and opportunity for precision medicine. Chest 2019.
  3. Bamagoos AA, Cistulli PA, Sutherland K, Madronio M, Eckert DJ, Hess L, et al. Polysomnographic endotyping to select patients with obstructive sleep apnea for oral appliances. Ann Am Thorac Soc 2019;16:1422e31.
  4. Sands SA, Edwards BA, Terrill PI, Butler JP, Owens RL, Taranto-Montemurro L, et al. Identifying obstructive sleep apnoea patients responsive to supplemental oxygen therapy. Eur Respir J 2018;52.
  5. Sands SA, Edwards BA, Terrill PI, Taranto-Montemurro L, Azarbarzin A, Marques M, et al. Phenotyping pharyngeal pathophysiology using polysomnography in patients with obstructive sleep apnea. Am J Respir Crit Care Med 2018;197:1187e97.
  6. Sands SA, Terrill PI, Edwards BA, Taranto Montemurro L, Azarbarzin A, Marques M, et al. Quantifying the arousal threshold using polysomnography in obstructive sleep apnea. Sleep 2018;41.
  7. Mazzotti DR, Keenan BT, Lim DC, Gottlieb DJ, Kim J, Pack AI. Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes. Am J Respir Crit Care Med 2019;200:493e506.
  8. Rechstaffen A, Kales A. A manual of standardized terminology: techniques of scoring system for sleep states of human subjects. Los Angeles: Brain Information Services/Brain Research Institute, University of California; 1968.
  9. Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification. Westchester, IL: American Academy of Sleep Medicine; 2007.
  10. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et alAmerican Academy of Sleep M. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012;8:597e619.
  11. Guilleminault C, Tilkian A, DementWC. The sleep apnea syndromes. Annu Rev Med 1976;27:465e84.
  12. Keenan BT, Kim J, Singh B, Bittencourt L, Chen NH, Cistulli PA, et al. Recognizable clinical subtypes of obstructive sleep apnea across international sleep centers: a cluster analysis. Sleep 2018;41.
  13. Kim J, Keenan BT, Lim DC, Lee SK, Pack AI, Shin C. Symptom-based subgroups of Koreans with obstructive sleep apnea. J Clin Sleep Med 2018;14:437e43.
  14. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793e5.
  15. Haendel MA, Chute CG, Robinson PN. Classification, ontology, and precision medicine. N Engl J Med 2018;379:1452e62.
  16. Yates LR, Seoane J, Le Tourneau C, Siu LL, Marais R, Michiels S, et al. The European Society for Medical Oncology (ESMO) precision medicine glossary. Ann Oncol 2018;29:30e5.
  17. Walko C, Kiel PJ, Kolesar J. Precision medicine in oncology: new practice models and roles for oncology pharmacists. Am J Health Syst Pharm 2016;73:1935e42.
  18. Kraft M. Asthma phenotypes and interleukin-13–moving closer to personalized medicine. N Engl J Med 2011;365:1141e4.
  19. Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol 2015;135:299e310. quiz 1.
  20. Lim DC, Sutherland K, Cistulli PA, Pack AI. P4 medicine approach to obstructive sleep apnoea. Respirology 2017;22:849e60.
  21. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 2013;188:996e1004.
  22. Butler MP, Emch JT, Rueschman M, Sands SA, Shea SA, Wellman A, et al. Apnea-hypopnea event duration predicts mortality in men and women in the Sleep Heart Health Study. Am J Respir Crit Care Med 2019;199:903e12.
  23. Borsini E, Nogueira F, Nigro C. Apnea-hypopnea index in sleep studies and the risk of over-simplification. Sleep Sci 2018;11:45e8.
  24. Kendzerska T, Leung RS. Going beyond the apnea-hypopnea index. Chest 2016;149:1349e50.
  25. Mazzotti DR, Lim DC, Sutherland K, Bittencourt L, Mindel JW, Magalang U, et al. Opportunities for utilizing polysomnography signals to characterize obstructive sleep apnea subtypes and severity. Physiol Meas 2018;39:09TR1.
  26. Zinchuk AV, Gentry MJ, Concato J, Yaggi HK. Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches. Sleep Med Rev 2017;35:113e23.
  27. Ye L, Pien GW, Ratcliffe SJ, Bjornsdottir E, Arnardottir ES, Pack AI, et al. The different clinical faces of obstructive sleep apnoea: a cluster analysis. Eur Respir J 2014;44:1600e7.
  28. Bosi M, Milioli G, Riccardi S, Melpignano A, Vaudano AE, Cortelli P, et al. Arousal responses to respiratory events during sleep: the role of pulse wave amplitude. J Sleep Res 2018;27:259e67.
  29. Lacedonia D, Carpagnano GE, Patricelli G, Carone M, Gallo C, Caccavo I, et al. Prevalence of comorbidities in patients with obstructive sleep apnea syndrome, overlap syndrome and obesity hypoventilation syndrome. Clin Respir J 2018;12:1905e11.
  30. Bonsignore MR, Baiamonte P, Mazzuca E, Castrogiovanni A, Marrone O. Obstructive sleep apnea and comorbidities: a dangerous liaison. Multidiscip Respir Med 2019;14 8.
  31. Pien GW, Ye L, Keenan BT, Maislin G, Bjornsdottir E, Arnardottir ES, et al. Changing faces of obstructive sleep apnea: treatment effects by cluster designation in the Icelandic Sleep Apnea Cohort. Sleep 2018:41. zsx201.
  32. Bonsignore MR, Suarez Giron MC, Marrone O, Castrogiovanni A, Montserrat JM. Personalised medicine in sleep respiratory disorders: focus on obstructive sleep apnoea diagnosis and treatment. Eur Respir Rev 2017;26.
  33. Ren R, Li Y, Zhang J, Zhou J, Sun Y, Tan L, et al. Obstructive sleep apnea with objective daytime sleepiness is associated with hypertension. Hypertension 2016;68:1264e70.
  34. Martynowicz H, Skomro R, Gac P, Mazur G, Porebska I, Brylka A, et al. The influence of hypertension on daytime sleepiness in obstructive sleep apnea. J Am Soc Hypertens 2017;11:295e302.
  35. Beaudin AE, Waltz X, Hanly PJ, Poulin MJ. Impact of obstructive sleep apnoea and intermittent hypoxia on cardiovascular and cerebrovascular regulation. Exp Physiol 2017;102:743e63.
  36. Younes M, Ostrowski M, Soiferman M, Younes H, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. Sleep 2015;38:641e54.
  37. Thomas RJ, Mietus JE, Peng CK, Goldberger AL. An electrocardiogrambased technique to assess cardiopulmonary coupling during sleep. Sleep 2005;28:1151e61.
  38. Younes M, Hanly PJ. Immediate postarousal sleep dynamics: an important determinant of sleep stability in obstructive sleep apnea. J Appl Physiol 2016;120(1985):801e8.
  39. Azarbarzin A, Ostrowski M, Hanly P, Younes M. Relationship between arousal intensity and heart rate response to arousal. Sleep 2014;37:645e53.
  40. Koch H, Schneider LD, Finn LA, Leary EB, Peppard PE, Hagen E, et al. Breathing disturbances without hypoxia are associated with objective sleepiness in sleep apnea. Sleep 2017;40.
  41. Azarbarzin A, Sands SA, Stone KL, Taranto-Montemurro L, Messineo L, Terrill PI, et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: the Osteoporotic Fractures in Men Study and the Sleep Heart Health Study. Eur Heart J 2019;40:1149e57.
  42. Muraja-Murro A, Kulkas A, Hiltunen M, Kupari S, Hukkanen T, Tiihonen P, et al. Adjustment of apnea-hypopnea index with severity of obstruction events enhances detection of sleep apnea patients with the highest risk of severe health consequences. Sleep Breath 2014;18:641e7.
  43. Kulkas A, Duce B, Leppanen T, Hukins C, Toyras J. Severity of desaturation events differs between hypopnea and obstructive apnea events and is modulated by their duration in obstructive sleep apnea. Sleep Breath 2017;21:829e35.
  44. Buysse DJ. Sleep health: can we define it? Does it matter? Sleep 2014;37:9e17.
  45. Goldschmied J, Kuna ST, Maislin G, Pack AI, Younes M. Changes in sleep depth following sleep deprivation assessed by three methods. Sleep Breath 2019;42:A128.
  46. Meza-Vargas S, Giannouli E, Younes M. Enhancements to the multiple sleep latency test. Nat Sci Sleep 2016;8:145e58.
  47. Lee WH, Ahn JC, We J, Rhee CS, Lee CH, Yun PY, et al. Cardiopulmonary coupling analysis: changes before and after treatment with a mandibular advancement device. Sleep Breath 2014;18:891e6.
  48. Thomas RJ, Wood C, Bianchi MT. Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea and insomnia. Sleep 2017. pii: 4718136.
  49. Kimoff RJ. Sleep fragmentation in obstructive sleep apnea. Sleep 1996;19:S61e6.
  50. EEG arousals: scoring rules and examples: a preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 1992;15:173e84.
  51. Loredo JS, Clausen JL, Ancoli-Israel S, Dimsdale JE. Night-to-night arousal variability and interscorer reliability of arousal measurements. Sleep 1999;22:916e20.
  52. Amatoury J, Azarbarzin A, Younes M, Jordan AS, Wellman A, Eckert DJ. Arousal intensity is a distinct pathophysiological trait in obstructive sleep apnea. Sleep 2016;39:2091e100.
  53. Azarbarzin A, Ostrowski M, Younes M, Keenan BT, Pack AI, Staley B, et al. Arousal responses during overnight polysomnography and their reproducibility in healthy young adults. Sleep 2015;38:1313e21.
  54. Gao X, Azarbarzin A, Keenan BT, Ostrowski M, Pack FM, Staley B, et al. Heritability of heart rate response to arousals in twins. Sleep 2017;40.
  55. Horner RL. Autonomic consequences of arousal from sleep: mechanisms and implications. Sleep 1996;19:S193e5.
  56. Azarbarzin A, Ostrowski M, Moussavi Z, Hanly P, Younes M. Contribution of arousal from sleep to postevent tachycardia in patients with obstructive sleep apnea. Sleep 2013;36:881e9.
  57. Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med 2004;169:623e33.
  58. Younes M, Park E, Horner RL. Pentobarbital sedation increases genioglossus respiratory activity in sleeping rats. Sleep 2007;30:478e88.
  59. Berry RB, Gleeson K. Respiratory arousal from sleep: mechanisms and significance. Sleep 1997;20:654e75.
  60. Edwards BA, Eckert DJ, McSharry DG, Sands SA, Desai A, Kehlmann G, et al. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am J Respir Crit Care Med 2014;190:1293e300.
  61. Terzano MG, Mancia D, Salati MR, Costani G, Decembrino A, Parrino L. The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 1985;8:137e45.
  62. Guilleminault C, Lopes MC, Hagen CC, da Rosa A. The cyclic alternating pattern demonstrates increased sleep instability and correlates with fatigue and sleepiness in adults with upper airway resistance syndrome. Sleep 2007;30:641e7.
  63. Parrino L, Boselli M, Buccino GP, Spaggiari MC, Di Giovanni G, Terzano MG. The cyclic alternating pattern plays a gate-control on periodic limb movements during non-rapid eye movement sleep. J Clin Neurophysiol 1996;13:314e23.
  64. Milioli G, Bosi M, Grassi A, Riccardi S, Terzano MG, Cortelli P, et al. Can sleep microstructure improve diagnosis of OSAS? Integrative information from CAP parameters. Arch Ital Biol 2015;153:194e203.
  65. Rizzi M, Sarzi-Puttini P, Atzeni F, Capsoni F, Andreoli A, Pecis M, et al. Cyclic alternating pattern: a new marker of sleep alteration in patients with fibromyalgia? J Rheumatol 2004;31:1193e9.
  66. Douglas NJ, Martin SE. Arousals and the sleep apnea/hypopnea syndrome. Sleep 1996;19:S196e7.
  67. Liang J, Cade BE,Wang H, Chen H, Gleason KJ, Larkin EK, et al. Comparison of heritability estimation and linkage analysis for multiple traits using principal component analyses. Genet Epidemiol 2016;40:222e32.
  68. Korkalainen H, Toyras J, Nikkonen S, Leppanen T. Mortality-risk-based apnea-hypopnea index thresholds for diagnostics of obstructive sleep apnea. J Sleep Res 2019. e12855.
  69. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med 2019;25:24e9.
  70. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44e56.
  71. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through deep reinforcement learning. Nature 2015;518:529e33.
  72. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484e9.
  73. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics 2017;37:505e15.
  74. Klang E. Deep learning and medical imaging. J Thorac Dis 2018;10:1325e8.
  75. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc 2016;316:2402e10.
  76. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. J Am Med Assoc 2017;318:2199e210.
  77. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016;6:24454.
  78. Younes M, Kuna ST, Pack AI, Walsh JK, Kushida CA, Staley B, et al. Reliability of the American Academy of sleep medicine rules for assessing sleep depth in clinical practice. J Clin Sleep Med 2018;14:205e13.
  79. Younes M, Raneri J, Hanly P. Staging sleep in polysomnograms: analysis of inter-scorer variability. J Clin Sleep Med 2016;12:885e94.
  80. Krahn LE, Hershner S, Loeding LD, Maski KP, Rifkin DI, Selim B, et al. Quality measures for the care of patients with narcolepsy. J Clin Sleep Med 2015;11:335.
  81. Mikkelsen KB, Ebajemito JK, Bonmati-Carrion MA, Santhi N, Revell VL, Atzori G, et al. Machine-learning-derived sleep-wake staging from around-the-ear electroencephalogram outperforms manual scoring and actigraphy. J Sleep Res 2019;28:e12786.
  82. Pardey J, Roberts S, Tarassenko L, Stradling J. A new approach to the analysis of the human sleep/wakefulness continuum. J Sleep Res 1996;5:201e10.
  83. Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH. Relief-based feature selection: introduction and review. J Biomed Inform 2018;85:189e203.
  84. de Chazal P, Sutherland K, Cistulli PA. Advanced polysomnographic analysis for OSA: a pathway to personalized management? Respirology 2019.
  85. Ghassemi MM, Moody BE, Lehman LH, Song C, Li Q, Sun H, et al. You snooze, you win: the PhysioNet/computing in cardiology challenge 2018. Comput Cardiol 2018;45:1e4.
  86. de Chazal P, Sadr N. Automatic scoring of non-apnoea arousals using hand-crafted features from the polysomnogram. Physiol Meas 2019;40.
  87. Olesen AN, Jennum P, Peppard P, Mignot E, Sorensen HBD. Deep residual networks for automatic sleep stage classification of raw polysomnographic waveforms. In: Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society; 2018. p. 1e4. Annual Conference 2018.
  88. Klok AB, Edin J, Cesari M, Olesen AN, Jennum P, Sorensen HBD. A new fully automated random-forest algorithm for sleep staging. In: Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society; 2018. p. 4920e3. Annual Conference 2018.
  89. Khalighi S, Sousa T, Santos JM, Nunes U. ISRUC-Sleep: a comprehensive public dataset for sleep researchers. Comput. Methods Programs Biomed 2016;124:180e92.
  90. Zhang L, Fabbri D, Upender R, Kent D. Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks. Sleep 2019.
  91. Terrill PI, Edwards BA, Nemati S, Butler JP, Owens RL, Eckert DJ, et al. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography. Eur Respir J 2015;45:408e18.
  92. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressure-flow relationships in obstructive sleep apnea. J Appl Physiol (1985) 1988;64:789e95.
  93. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis 1991;143:1300e3.
  94. Schwartz AR, Smith PL, Wise RA, Gold AR, Permutt S. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure. J Appl Physiol 1988;64:535e42.
  95. Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore HE, et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat Commun 2018;9:5229.
  96. Christensen JA, Carrillo O, Leary EB, Peppard PE, Young T, Sorensen HB, et al. Sleep-stage transitions during polysomnographic recordings as diagnostic features of type 1 narcolepsy. Sleep Med 2015;16:1558e66.
  97. Olsen AV, Stephansen J, Leary E, Peppard PE, Sheungshul H, Jennum PJ, et al. Diagnostic value of sleep stage dissociation as visualized on a 2-dimensional sleep state space in human narcolepsy. J Neurosci Methods 2017;282:9e19.
  98. Jensen JB, Sorensen HB, Kempfner J, Sorensen GL, Knudsen S, Jennum P. Sleep-wake transition in narcolepsy and healthy controls using a support vector machine. J Clin Neurophysiol 2014;31:397e401.
  99. Vassalli A, Dellepiane JM, Emmenegger Y, Jimenez S, Vandi S, Plazzi G, et al. Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children. Brain 2013;136:1592e608.
  100. Pizza F, Vandi S, Iloti M, Franceschini C, Liguori R, Mignot E, et al. Nocturnal sleep dynamics identify narcolepsy type 1. Sleep 2015;38: 1277e84.
  101. Leary EB, Moore H E t, Schneider LD, Finn LA, Peppard PE, Mignot E. Periodic limb movements in sleep: prevalence and associated sleepiness in the Wisconsin Sleep Cohort. Clin Neurophysiol 2018;129:2306e14.
  102. Ferri R. Leg movements during sleep and respiratory events are not causally linked. Sleep Med 2017;34:254e5.
  103. Huang AS, Skeba P, Yang MS, Sgambati FP, Earley CJ, Allen RP. MATPLM1, A MATLAB script for scoring of periodic limb movements: preliminary validation with visual scoring. Sleep Med 2015;16:1541e9.
  104. Ferri R, Fulda S, Allen RP, Zucconi M, Bruni O, Chokroverty S, et al., International and European Restless Legs Syndrome Study G. World Association of Sleep Medicine (WASM) 2016 standards for recording and scoring leg movements in polysomnograms developed by a joint task force from the International and the European Restless Legs Syndrome Study Groups (IRLSSG and EURLSSG). Sleep Med 2016;26:86e95.
  105. Skeba P, Fulda S, Hiranniramol K, Earley CJ, Allen RP. Defining morphology of periodic leg movements in sleep: an evidence-based definition of a minimum window of sustained activity. Sleep Breath 2016;20:1293e9.
  106. Klosch G, Kemp B, Penzel T, Schlogl A, Rappelsberger P, Trenker E, et al. The SIESTA project polygraphic and clinical database. IEEE Eng Med Biol Mag 2001;20:51e7.
  107. Hedner J, Grote L, Bonsignore M, McNicholasW, Lavie P, Parati G, et al. The European Sleep Apnoea Database (ESADA): report from 22 European sleep laboratories. Eur Respir J 2011;38:635e42.
Полный текст