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Abstract: Long-range correlations are often used as diagnostic markers in physiological research.

Due to the limitations of conventional techniques, their characterizations are typically carried out

with alternative approaches, such as the detrended fluctuation analysis (DFA). In our previous works,

we found EEG-related markers of the blood-brain barrier (BBB), which limits the penetration of

major drugs into the brain. However, anesthetics can penetrate the BBB, affecting its function in a

dose-related manner. Here, we study two types of anesthesia widely used in experiments on animals,

including zoletil/xylazine and isoflurane in optimal doses not associated with changes in the BBB.

Based on DFA, we reveal informative characteristics of the electrical activity of the brain during

such doses that are important for controlling the depth of anesthesia in long-term experiments using

ﬁ:%la(t?sr magnetic resonance imaging, multiphoton microscopy, etc., which are crucial for the interpretation of

experimental results. These findings provide an important informative platform for the enhancement
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and refinement of surgery, since the EEG-based DFA analysis of BBB can easily be used during
surgery as a tool for characterizing normal BBB functions under anesthesia.
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https://doi.org/10.3390/

diagnostics13030426 1. Introduction

Academic Editor: Vadim V. Grubov Natural systems often exhibit complex dynamics with long-range power-law correla-
tions [1] that can be quantified by a slowly decaying correlation or covariation function.
Such quantification is highly important for a deeper understanding of system behavior and
the effects of long memory. In particular, it clearly differs from the exponentially decaying
correlation function observed in the dynamics of deterministic models producing chaotic
oscillation. The presence of power—law statistics is associated with the absence of a specific

time scale and with the existence of the self-similarity property (a scale-invariant structure),
when a wide range of scales takes part in the global description of the observed dynamics.
Physiology in general shows many examples of systems, where power-law statistics (1/ f
activity) are combined with various rhythmic contributions, and numerous studies have
This article is an open access article ~ 0€€N performed to explain the origin of the 1/ f spectrum slope in recorded signals [2-6].
distributed under the terms and  Lhe classical correlation function has at least two restrictions in studying the effects of long
conditions of the Creative Commons ~ Memory, such as the difficulty in revealing its law of decay as values tend to zero, and its
Attribution (CC BY) license (https://  inapplicability to systems with time-varying parameters producing nonstationary behav-
creativecommons.org/ licenses /by / ior. In this regard, alternative signal processing tools for long-range correlation analyses
40/). have been developed, which include R/S analysis [7], different versions of fluctuation
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analysis [8,9], with the detrended fluctuation analysis (DFA) [10,11] as the most widely
used technique, wavelet-based multifractal formalism [12,13], etc. Currently, DFA is a
popular approach that has some limitations [14-16], but it is a fairly simple tool (compared,
e.g., with the multifractal analysis [13]), which can better resolve the range of long-range
correlations than the correlation function.

Scale-invariant structures of physiological processes often have distinctions between
healthy and pathological states [17-19], as well as between various pathological states [20].
Due to this circumstance, a quantitative assessment of long-range correlations provides
informative diagnostic measures. This quantification can be provided by the scaling
exponent of DFA [10] that has a relation to the exponents describing the decay of the
correlation function or the slope of the spectral power. However, in many cases, it is
not enough to apply a single (global) quantity to describe correlations over the entire
range of available scales. Thus, the paper [11] discusses the different scaling behavior
for long-range and short-range correlations in heart rate dynamics. The latter means
that the local scaling exponents can outperform the average measure in characterizing
signal features. An alternative way is to consider the multifractal concept and quantify
the temporal variations of the scale-invariant structure of physiological data sets in terms
of a singularity spectrum, which can be estimated using the wavelet-transform modulus
maxima method [12] or multifractal DFA [21,22]. Despite these tools providing informative
and detailed characterizations of complex scaling in inhomogeneous physiological time
series, even the simplest approach dealing with conventional DFA with the introduction of
local slopes of fluctuations in the signal profile from a local trend depending on the scale
parameter is a useful way for diagnostic-related studies.

Recent studies [23-29] showed that sleep and BBB openings are two conditions associ-
ated with similar activation of the brain’s drainage system. They proposed EEG markers
for these states based on several signal processing techniques, including DFA and machine
learning tools. In this work, we perform a DFA analysis of anesthesia because the BBB
prevents the efficient delivery of major drugs into the central nervous system. However,
anesthetics can penetrate the BBB to induce clinical anesthesia. If the optimal dose of
anesthesia is applied, the permeability of the BBB is restored immediately after anesthesia
is turned off, which is of high clinical relevance. For example, Spieth et al. [30] demon-
strated that isoflurane causes a temporary opening of the BBB, and BBB functions were
recovered directly after the termination of anesthesia, providing a certain window for drug
delivery. The effects of anesthesia on BBB functions are highly dependent on the dose of
anesthesia. For example, 1% isoflurane does not affect the BBB, while 2% and 3% induce an
increase in the BBB permeability to high and small molecular weight substances [30-33].
Here, we study EEG characteristics in rats under two types of anesthesia at optimal doses
widely used in animal experiments, including zoletil/xylazine (100 mg/kg/10 mg/kg,
respectively) and 1% isoflurane, which are not associated with changes in the BBB [30,31].
We aim to develop a new method for EEG control of BBB permeability during surgical pro-
cedures and long-term experiments requiring the use of such types of anesthesia (magnetic
resonance imaging, multiphoton microscopy, etc.), which is important for interpreting the
experimental results. This study is also important for the enhancement and refinement of
surgery because EEG-based DFA analysis of BBB can easily be used during surgery as a
tool for characterizing normal BBB functions under anesthesia. In general, the effects of
anesthesia on the body are widely known. It causes a loss of muscle tone and a related
reduction in resting lung volume [34]. It affects the cardiovascular system and can produce
a variety of cardiac depression and hemodynamic instability [35]. Anesthesia prevents
communication between neurons in distinct areas of the brain [36], and the induced state
of unconsciousness by destroyed coordinated neuronal processes in the central nervous
system is different from sleep [37].

Here, we discuss how different types of anesthesia are reflected in power—-law corre-
lations in the EEG characterized by DFA local scaling exponents. The paper is organized
as follows. Section 2 gives a brief description of the method for studying the correlation
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features of EEG signals and experiments in rats. Section 3 describes the main findings of
the effects of anesthesia on the electrical activity of the brain and their discussion for both
types of artificial sleep. Section 4 provides a summary of concluding remarks.

2. Methods and Experiments
2.1. Subjects

Experiments were carried out on male Wistar rats (2 months old) in accordance with the
Guide for the Care and Use of Laboratory Animals published by the US National Institutes
of Health (NIH Publication no. 85-23, revised 1996) and protocols approved by the Insti-
tutional Review Board of Saratov State University (Protocol 9, 26.06.2022). Animals were
kept at a temperature of 25 £ 2 °C, humidity at 55%, and a light-dark cycle of 12:12 hours.
Food and water were given ad libitum. Rats were taken from the vivarium in Pushchino
(Russia) one week before the start of the experiments to ensure acclimatization to the
housing room. Experiments were performed on two groups of animals: (1) injection anes-
thesia with zoletil /xylazine (100 mg/kg/10 mg/kg, Virbac Sante Animale, France/NITA-
FARM, Russia, respectively), and (2) inhalation anesthesia with 1% isoflurane at 1 L/min
N>O/0,—70:30, (Dexa Medica, USA); n = 7 in each group. The design of experiments
included EEG recording for 30-35 min without anesthesia; then the EEG was recorded for
the next 3040 min in the same animals that received anesthesia at the dose recommended
for the surgery.

2.2. EEG Recording

Two-channel cortical EEGs [38,39] were recorded (Pinnacle Technology, Taiwan). Two
silver electrodes (tip diameter 2-3 pm) were implanted into the frontal cortex to a depth of
150 pm in coordinates (L: 2.0 mm and P: 2 mm) from Bregma on either side of the midline
under inhalation anesthesia with 1% isoflurane at a dose of 1 L/min N,O/0O,—70:30. The
head plate was mounted and small burr holes were drilled. Then, EEG wire leads were
inserted into the burr holes on one side of the midline between the skull and underlying
dura mater. The EEG leads were fixed with dental acrylic. Ibuprofen (15 mg/kg) to relive
postoperative pain was given to them with the water supply two to three days before
surgery and for three days after surgery. The rats were given 10 days to recover from the
surgery before the start of the experiment.

2.3. DFA

A detrended fluctuation analysis was proposed [10,11] and widely used in various
studies [40-44] as an alternative to the conventional correlation analysis of nonstationary
processes and signals with a rapidly decreasing correlation function, which complicates the
quantification of long-range correlations due to significant computational errors, especially
for noisy data. This method represents a version of the root-mean-square analysis of
random walks with a local detrending procedure. The DFA includes building a profile of
asignal x(i),i = 1,...,N as y(k) = £¥_, x(i). This profile is separated into segments of
length n. Depending on the amount of data, segments may or may not overlap. Profile
fluctuations from the local trend y, (k) are computed and averaged over the entire data set

y(k)

1Y 2
F(n) = | 57 L lw(k) —ya(R)]". M
N k=1
where y, (k) is fitted within each segment with the least-squares method using linear or
nonlinear functions. The computations are carried out for a variable length of the segment
n to analyze the power-law dependence

F(n) ~ n". 2
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In the presence of scale-invariant structures, the global quantity a can describe the
features of power—law correlations in the signal x(i). In particular, it makes it possible to
distinguish between anti-correlations (« < 0.5), uncorrelated behavior (¢« = 0.5), and posi-
tive correlations of various types (« > 0.5). For complex signals produced by physiological
systems, distinctions in the correlation features can depend on the scale and, therefore, a
number of local scaling exponents can give a more complete description of the dynamics
under study.

3. Results and Discussion

The preliminary analysis of the recorded data sets to select an appropriate range
of scales for computing the DFA scaling exponent shows nonlinear behavior of F(n) on
a log-log plot (Figure 1). Although there are visual differences between the two states,
namely wakefulness and anesthesia, they are not enough to use a single a-exponent for
each state, and its local values become preferable. This circumstance is related to both types
of anesthesia. The Ig n regions associated with the strongest inter-state distinctions may
differ depending on the animal and on the position of the electrode; therefore, it seems
appropriate to establish the optimal values of the computational parameters for each record
and then consider the statistics for the entire groups of animals. According to Figure 1,
these optimal values belong to the region of relatively long-range correlations, and for
lgn < 1.8, the results are very close.

wakefulness
anesthesia

5.0

—— wakefulness
anesthesia

1 4.0

(b)

Figure 1. Examples of nonlinear behavior of F(n) on a log-log plot for injection (a) and inhalation (b)
anesthesia. Insets show fragments of the original EEG signal from each condition.

Figure 2 provides a fairly informative representation of computations on a plane
(time, range of scales), that clearly shows the structural changes in signals caused by the
transition to the anesthesia stage. Note that here we estimate scaling exponents locally,
i.e., compute the local slopes of Ig F versus lg n within a sliding window Ign of size 0.7.
Figure 2 illustrates that despite the distinctions appearing after the implementation of
anesthesia, the choice of an appropriate range of scales is of significant importance for
diagnostic purposes. In particular, visually more essential differences take place near
lgn = 2.8 compared to other values of the g n1, and these distinctions are better identified
in Figure 2a.

In addition to visual control of the results, they can be quantified on the basis of
statistical tests. In order to compare diagnostic abilities, depending on the type of anesthesia,
we estimated t-values of the Student’s ¢-test for EEG signals related to the two considered
physiological conditions. For this purpose, we chose 10 EEG segments of 1 min each
for wakefulness and 10 segments related to anesthesia. Figure 3 shows the performed
estimates for the same records that were used for the computations given in Figures 1 and 2.
These estimates confirm the existence of an optimal lg n value that provides the strongest
distinctions between physiological states, and give a range of scales providing reliable
diagnostic results (t-values that go beyond the dashed line are associated with significant
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differences with p < 0.05). In the considered examples, the optimal values of Ign are 2.8
(Figure 3a) and 2.9 (Figure 3b). The scale ranges that can be used to diagnose the effects
of anesthesia are [1.7, 3.2] (Figure 3a) and [2.4, 3.2] (Figure 3b). Thus, in the examples
considered, the first type of anesthesia caused stronger changes in EEG signals with larger
t-values quantifying the differences between the states of wakefulness and anesthesia.

(a) (b)
Figure 2. Examples of computations of local scaling exponents on a plane (time, range of scales)
for injection (a) and inhalation (b) anesthesia. The arrows indicate when the anesthesia injection or
inhalation started.
8.0 8.0
6.0 r B
- -~ 40} 1
2.0 s N i
0.0 L L
1.0 2.0 3.0 4.0
Ign
(a) (b)

Figure 3. Estimates of t-values of the Student’s t-test for EEG signals for injection (a) and inhalation
(b) anesthesia.

The statistical analysis gives the optimal value of Ign equal to 2.6, as the average
quantity for all groups of rats and all EEG-channels. Based on this assessment, local «-
values related to the two states were compared for each type of anesthesia and EEG channel.
The results shown in Figure 4 demonstrate similar distinctions. For both types of anesthesia,
a reliable diagnosis of changes in long-range correlations was revealed. During injection
anesthesia with zoletil/xylazine, 6 out of 7 animals showed an increase in the local scaling
exponent, and the results for both channels were quite similar (Figure 4a,b). In particular,
only for the 5th rat, the approach used did not reveal significant inter-state distinctions.
For other animals, the changes in a-values significantly exceed the standard deviations
of the estimated quantities. During inhalation anesthesia with isoflurane, the results are
analogous (Figure 4c,d), namely, in 6 out of 7 rats, strong changes in « are observed when
examining the 1st EEG channel (the absence of clear changes takes place only for the 4th
rat). In the case of the 2nd EEG channel, a less clear reaction was also observed in the
1st rat.
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Figure 4. Local a-values for groups of animals for injection (a,b) and inhalation (c,d) anesthesia.
Results are shown for the 1st (a,c) and 2nd (b d) EEG channels.

Note that the diagnostic results given in Figure 4 were obtained by choosing lgn = 2.6
as the optimal (on average) value of the scale parameter. If dealing with individually
selected scales associated with the maximum ¢-value of the Student’s t-test, the separation
of states can be improved. Table 1 contains the given estimates including the maximum
t-value and the related scale range. For 27 out of 28 EEG signals, it becomes possible to
identify changes in correlation features during the transition from wakefulness to anesthesia.
Despite both types of anesthesia providing similar diagnostic results, they can nevertheless
produce different structural changes in EEG signals. Thus, the first type of anesthesia often
causes longer effects, and for the second type, such effects can be shorter.

In addition to the quantitative assessment of differences in steady-state regimes,
structural changes in EEG signals were analyzed from transient processes after the admin-
istration of anesthesia. Figure 5 illustrates the t-values computed by comparing m = 10
EEG-segments related to the beginning 10 min of the awake state with subsequent data
parts in a sliding window approach. Due to the averaging effect, transitions between states
in t-values are quite slow. However, the crossing of the dashed line, indicating the critical
value . = 2.228 related to p < 0.05, occurs close to the time of administration of anesthesia
(marked with an arrow). Consideration of a smaller number of EEG segments (e.g., m = 4
in Figure 5) does not essentially improve the identification of the corresponding transition
between states.
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Table 1. The maximum ¢-value and the optimal scale range for individual records and both types
of anesthesia.

Rat Number EEG-Channel Maximum ¢-Value Optimal I1gn
Injection anesthesia
1 1 3.41 3.4
2 3.85 25
2 1 7.14 2.6
2 427 2.0
3 1 6.47 2.8
2 3.61 2.0
4 1 4.76 2.7
2 6.49 24
5 1 2.24 3.1
2 2.31 3.1
6 1 4.67 2.7
2 6.86 23
7 1 5.29 29
2 4.72 29
Inhalation anesthesia
1 1 4.16 21
2 3.78 2.0
2 1 3.22 2.6
2 5.56 25
3 1 3.52 238
2 2.54 2.6
4 1 2.68 2.3
2 1.46 29
5 1 6.94 3.0
2 5.58 2.9
6 1 5.24 27
2 4.04 2.7
7 1 5.40 2.8
2 6.27 2.9
6.0 T T T T 6.0 T
m=10 — m=10
- m=4 e =4

40 -

20 -

0.0 b=t SN ot : ‘ ‘ ‘ ‘
10.0 20.0 30.0 40.0 50.0 60.0 10.0 200 30.0 40.0 50.0 60.0

time, min time, min
(a) (b)

Figure 5. Examples of the t-values estimated by comparing m beginning 1-minute EEG-segments
with subsequent segments in a sliding window approach. The time of administration of anesthesia is
marked with an arrow. Results are shown for injection (a) and inhalation (b) anesthesia. The dashed
line indicates the critical value ¢, = 2.228 associated with p < 0.05.
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4. Conclusions

Characterization of long-range correlations is often carried out for physiological sys-
tems to provide markers of changes in scale-invariant structures caused by transitions
between distinct physiological states. The limitations of the traditional correlation function
are the reason for the increased attention to alternative approaches, such as fluctuation
analysis and DFA, as special cases. This method also has disadvantages, e.g., associated
with a reliable quantitative assessment of signal features in the presence of non-stationarity
and a trend without their prior exclusion. The latter can lead to incorrect conclusions
about the underlying dynamics. Nevertheless, DFA is a useful approach for many studies,
assuming that thorough signal preprocessing is carried out. The complex structure of the
experimental time series may require careful data analysis using local scaling exponents
that describe signal features in distinct scale ranges. Such type of analysis is performed in
the current study by quantifying distinctions in EEG signals during anesthesia depending
on the scale parameter and testing for significant changes in local scaling exponents using
Student’s t-test.

Our analysis revealed significant distinctions in EEG in the state of wakefulness and
anesthesia in terms of correlations in the range of lgn approximately [2.0-3.0]. These
distinctions can be detected by choosing fixed algorithmic parameters, but the individual
selection of such parameters, taking into account the features of each record, makes it possi-
ble to improve the diagnostic capabilities of the method. Thus, the use of two features of
the DFA method, namely, local scaling exponents and individual adjustment of algorithmic
parameters that maximize Student’s t-values, provided a reliable identification of the effects
of anesthesia in 27 out of 28 records. Such identification gives similar results for both types
of anesthesia, namely injection and inhalation anesthesia, although the first type often
causes prolonged effects in terms of long-range correlations. Consideration of transient
processes allows one to correctly detect transitions between states, regardless of the type of
anesthesia. These results provide an important informative platform for the enhancement
and refinement of surgery since the EEG-based DFA analysis of BBB can easily be used
during surgery as a tool for characterizing normal BBB functions under anesthesia.
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Abbreviations

The following abbreviations are used in this manuscript:

BBB  blood-brain barrier
DFA  detrended fluctuation analysis
EEG electroencephalogram
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